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Summary: In this paper, the widely recognised apparent power definitions, which are Arithmetic, 
Vector, IEEE standard, DIN standard apparent power definitions and the apparent power definition 
of Mayordomo and Usaola, are rigorously reviewed, and their abilities on the measurement of the 
system’s power transfer efficiency are analysed by using a specially derived apparent power, which 
is calculated in terms of the total line losses of the system with and without the reactive power com-
pensation. In the analyses, two major compensation strategies, namely the minimum line loss (MLL) 
and sinusoidal and balanced current (SBC) compensation strategies, are considered to determine 
the total line loss of the system with the compensation. Therefore, in a representative nonsinusoidal 
and unbalanced test system, the results are simulated by taking into account unbalance among the 
resistances of neutral and phase lines. The simulated results show that under nonsinusoidal and 
unbalanced conditions, the unbalance among the resistances of neutral and phase lines highly af-
fects the system’s power transfer efficiency. Additionally, Mayordomo and Usaola’s apparent power 
definition can be used for proper measurement of the power transfer efficiency in the nonsinusoidal 
and unbalanced systems. On the other hand, the accuracies of the rest of the reviewed definitions 
considerably depends on unbalance among the resistances of neutral and phase lines. It should also 
be mentioned that the accuracies of the apparent power definitions are considerably not affected by 
the type of compensation strategy. 
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1. Background

Hitherto, in sinusoidal single-phase systems, with the aim 
of to provide a tool for the sizing of the system’s equipment 
and the measurement of system’s power transfer efficiency 
the classical apparent power was defined as the product of 
rms values of voltage and current, and it is also decomposed 
as the vector sum of the active power, which transports the 
net energy from the source to the load, and rest is the reactive 
power. The classical apparent power is conventionally 
calculated for three-phase systems by treating each phase 
individually. According to this approach, Arithmetic and 
Vector apparent powers were defined in the literature [2,13]. 
Vector apparent power is the vector sum of active and reactive 
powers of each phase:
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where the active and reactive powers measured at phase m 
are Pm = VmIm cosθm and Qm = VmIm sinθm, respectively. 
Other definition is the Arithmetic apparent power that is the 
arithmetic sum of phase apparent powers (Sm = VmIm):
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For balanced and sinusoidal systems, both apparent powers 
are equal to

 
3 pp pS V I=  where Vpp and Ip are the rms values 

of the phase-to-phase voltage and phase current.

Consequently the index of the system’s power transfer 
efficiency, conventionally named as power factor, was 
expressed as the ratio of active power to apparent power:
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=
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For sinusoidal and balanced three-phase systems with 
identical line resistances (r), total line loss (∆P) can be written 
as a function of the apparent power (S):
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One can see from (3) and (4) for the considered systems 
that power factor can effectively be employed to measure 
total line loss or system’s power transfer efficiency due to 
the fact that the square of apparent power is linearly related 
with total line loss when the voltage is constant. However, 
for unbalanced three-phase systems, Arithmetic and Vector 
apparent powers have nonlinear parts with respect to total line 
losses. As a result, they do not give true information on the 
system’s power transfer efficiency. This matter can basically 
be explained for a three-phase and three-line system, which 
consists of linear-unbalanced load, sinusoidal-balanced 
voltage source and identical line resistances. In this case, 
Arithmetic apparent power (SAr) and total line loss (ΔP) 
can be written as:
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and the square of Arithmetic apparent power is calculated:
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where the voltage drop on the line resistances are negligible 
and phase-to-neutral voltages are assumed as balanced 
(Va = Vb = Vc = Vp). On the other hand, the relation between 
Vector apparent power (SV) and total line loss (ΔP) can be 
investigated using similar approach. The total active and total 
reactive powers are expressed as in (8) and (9):
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(8)

( )sin sin sinp a a b b c cQ V I I Iθ θ θ= + +
           

 (9)

Thus, the square of Vector apparent power is found as:
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And then, (10) can be arranged as:
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This simple qualitative analysis shows that the square 
of both apparent powers are not linearly related with the 
total line loss for unbalanced conditions. Due to this lack 
of Vector and Arithmetic apparent powers, qualitatively 
illustrated above, apparent power was redefined for poly-
phase systems in Buchholz’s studies [5,6]. He proposed an 
apparent power definition, which threats the system as a 
single unit, by using “collective rms voltage” and “collective 
rms current” definitions. At the present time, the resolution 
of Buchholz’s apparent power, which is based on the current 
relations presented by FBD (Fryze-Buchholz-Depenbrock) 

theory [7], took place in German standard DIN 40110 [10]. 
The DIN power resolution approbates Buchholz’s apparent 
power as the maximal active power that can be transmitted for 
the given voltage waveform and the given current rms value. 
On the other hand, Buchholz’s apparent power is linearly related 
to the total line loss only for the systems with identical line 
resistances. However, the line resistances are not identical that 
is the case for most of the practical power systems. In order to 
fulfil this gap, Mayordomo and Usaola and S.J. Jeon redefined 
Buchholz’s apparent power for such systems [14,15].

In addition to the apparent powers mentioned above, 
IEEE std. 1459 [13] working group defined apparent power 
in terms of “equivalent rms voltage” and “equivalent rms 
current”. It threats three-phase system as a single unit like 
Buchholz’s apparent power. However, it should be noted 
that IEEE apparent power gives the maximal active power, 
which can be transmitted under ideal conditions (sinusoidal 
and balanced) with the same rms voltage and current. 

On the other hand, a completely different view took place 
in Ghassemi’s works [11,12]. He proposed an apparent power 
definition, which is the magnitude of “complex instantaneous 
power”. It is clearly understood from his derivations that his 
apparent power definition is related with the proper sizing of 
the system and its equipment but not the loss of the system.

In this study, firstly the milestone studies on the apparent 
power definitions are summarized in section II. Secondly, the 
outlines of the widely recognized apparent power definitions 
are given in section III. Finally, for an unbalanced and non-
sinusoidal test system, the abilities of the apparent power 
definitions on the measurement of the system’s power 
transfer efficiency are investigated by taking into account 
the unbalance among the resistances of neutral and phase 
lines and giving particular emphasis to the compensation 
strategies. It should be noted that a part of this study was 
previously presented and discussed in [4].

2. Literature Summary

The philosophy of apparent power was explained and 
interpreted in many engineering publications, accessible 
important ones of these studies are summarised below to 
show apparent power’s evolution.

One of these studies [9] that is a milestone work on the 
way of present IEEE standard definition presents that the 
resolution of Buchholz’s apparent power contains active 
and non-active powers calculated by using symmetrical 
components theory for a sinusoidal but unbalanced three-
phase system. It also shows that the negative and zero 
sequence powers cause additional power losses in the 
network and they should be viewed as useless powers unless 
they are generated purposely with the goal of cancelling 
these powers of another load. Therefore, author concluded 
that power factor should be defined as the ratio of positive 
sequence active power to Buchholz’s apparent power.

In another study [8], the same author concludes that the 
power loss of the system is not linearly related with the 
square of Arithmetic and Vector apparent powers under 
unbalanced and nonsinusoidal conditions. Only the apparent 
power defined by Buchholz holds this property for the same 
conditions. 

(11)



3

Williems et al. [19,20] discussed the relationships and 
differences between two apparent power definitions that took 
place in DIN and IEEE standards. The main conclusion of these 
studies is that two apparent power definitions give different 
results only if zero sequence voltage exists in the system. 

In [17], Pajic and Emanuel provided comparative 
evaluation of the apparent power definitions placed in DIN 
and IEEE standards. They pointed out that DIN definition 
uses a pure mathematical approach to obtain unity power 
factor case that implies the currents in-phase with the 
voltages. Thus, in unity power factor case of DIN definition 
(Buchholz’s definition), negative and zero-sequence currents 
may be present. IEEE definition uses a practical approach 
to obtain unity power factor case that implies perfectly 
sinusoidal and balanced voltages and currents in-phase with 
each other. In addition, the evaluation results show that for 
the networks, where the differences among the supplying 
lines resistances are small and the zero-sequence voltage is 
kept low, DIN and IEEE definitions yield the results that are 
nearly overlapping.

[16] summarizes several apparent power definitions and 
their resolutions, which have frequency and time domain 
calculations, and shows that none of the definitions and 
resolutions can be used to solve all of the non-sinusoidal and/
or unbalanced power system’s problems, i.e. compensation, 
metering and billing.

Finally, a recent study [3] evaluated different apparent 
power definitions using the simulation of a typical power 
network that supplies linear and non-linear loads, and 
analysed the effects of several methods of non-active power 
compensation on the power factor, unbalance, harmonic 
distortion, motor power losses and converters voltage ripple. 
Therefore, it advocated the idea that the apparent power 
should quantify an ideal situation that represents optimum 
energy flow conditions not only for the energy supplier, but 
for the consumers as well. 

Above literature summary shows that apparent power 
is still a controversial topic in the non-sinusoidal and 
unbalanced systems despite the fact that it is the core for 
design and operation of the power systems. Accordingly, the 
evaluation studies on the apparent power definitions should 
continue to understand their capabilities and limitations. 

3. Expressions of Apparent  
Power Definitions 

In this section, the apparent power definitions other than 
Arithmetic apparent power, which is given in the background, 
Ghassemi’s apparent power [11,12], which is not in the scope 
of this study due to the fact that it does not aim to measure 
the losses, and S. J. Jeon’s apparent power [14], which is 
identical with Mayordomo and Usaola’s apparent power 
[15], are briefly summarised:

3.1. Vector Apparent Power 

This is one of the oldest [2] and probably the most 
common definition [18]. According to the definition, under 
nonsinusoidal or harmonically distorted system conditions 

the powers are measured individually for each of the three 
phases m = a, b, c:
Active powers,
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and the calculated distortion powers,
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giving the vector apparent power:
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where h denotes the harmonic number of voltages and 
currents. 

Since each phase is treated as an independent single-phase 
system in this definition, it proposes the compensation of the 
each phase separately. 

3.2. Buchholz’s (or DIN standard) Apparent Power

For three-phase systems (a, b, c phases) with neutral line 
(n), Buchholz’s apparent power definition [6,7,10] can be 
expressed as:

2 2 2 2
0 0 0 0

2 2 2 2

a b c n

a b c n

S V I V V V V

I I I I

Σ Σ Σ= = + + + ×

× + + +       

   (17)

where the line-to-virtual star point rms voltages (Va0, 
Vb0, Vc0, Vn0) can be calculated in terms of the positive-, 
negative- and zero- sequence voltage harmonics of order h 
( 0,  ,  h h hV V V+ − ) [3];
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In DIN standard 40110 [10], by taking into account 
the current decomposition defined in FBD theory [7], the 
apparent power is separated into active (or average power) 
and two non-active power components: 

2 2 2
IItot v totS P Q Q∑ ∑ ∑⊥= + +

              (20)

The non-active power drawn due to the difference between 
the conductance of the line m, 2

0/m m mG P V= , and equivalent 
conductance, G = P/V2

Σ, can be calculated as:
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Thus, the non-active power drawn by the component of the 
collective rms current orthogonal with the voltage, can be 
found as:
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According to this power decomposition, in unity power 
factor case; the load should react to the lines as a symmetric 
load consisting of four identical star connected ohmic 
resistors. Thus, it can be mentioned that Buchholz’s apparent 
power definition treats the neutral wire (n) as a fourth phase. 
In addition to that, for the unity power factor case of this 
apparent power, some imbalance and distortion may persist 
in the line currents [3].

3.3. IEEE Apparent Power 

IEEE standard 1459 [13] proposed apparent definition 
relies on equivalent rms voltage,

( )2 2 2 2 2 21 3
18e a b c ab bc caV V V V V V V = + + + + +       
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and equivalent rms current,
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giving apparent power as below;

3e e eS V I=                               (25)

The IEEE definition has two main power components: 
first is fundamental effective apparent power;

1 1 13e e eS V I=                              (26)

where Ve1 and Ie1 are the fundamental harmonic equivalent 
rms voltage and current values, which are calculated by 
substituting only fundamental harmonic voltages and currents 
in (23) and (24), and second is non-fundamental apparent 
power;

2 2 2
1eN e eS S S= −                           (27) 

Fundamental effective apparent power is decomposed into 
fundamental harmonic positive sequence apparent power and 
fundamental harmonic unbalanced apparent power:

( )2 2
1 1 1e US S S+= +

                     
(28)

Fundamental harmonic-positive sequence apparent power 
can be calculated as:

                                     
( ) ( )2 2

1 1 1S P Q+ + += +                     
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by means of fundamental harmonic-positive sequence acti- 
ve power   ( )1 1 1 13 cosP V I θ+ + + +=

 and fundamental harmonic 
positive sequence  reactive power

 ( )1 1 1 13 sinQ V I θ+ + + +=   
 

In addition, non-fundamental apparent power is decomposed 
into the power components as follows:

2 2 2 2
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where:

13eI e eHD V I=                            (31)

is the current distortion power,

13eV eH eD V I=                            (32)

is the voltage distortion power,

2 23eH eH eH H eHS V I P D= = +                (33)

is the harmonic apparent power, which is the vector sum of 
the total harmonic active power (PH) and the harmonic 
distortion power (DeH). Note that VeH and IeH are the non 
fundamental components of the equivalent rms voltage and 

current 
2 2

1eH e eV V V= − , 2 2
1eH e eI I I= − .

Therefore, IEEE apparent power is decomposed as:

( ) ( )2 2 2 2 2 2
1 1 1e U eI eV eHS P Q S D D S+ += + + + + +

  
(34)

It can be concluded from (34) that IEEE apparent power 
approbates the powers other than fundamental harmonic 
positive sequence active power as non-active powers. 
Consequently, voltage and current must have in phase 
sinusoidal and balanced wave shapes for the unity power 
factor case of the IEEE definition.

3.4. Apparent Power Defined By Mayordomo and 	 
Usaola

In [15], Mayordomo and Usaola modified Buchholz’s 
apparent power as:

MU MU MUS V I=                           (35)
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by redefining collective rms voltage, 

2
0

, , ,
1MU m m

m a b c n
V Vβ

=
= ∑

                    
(36)

and collective rms current,

2

, , ,
MU m m

m a b c n
I Iβ

=
= ∑

                 
(37)

where Vm0 denotes the rms value of line m -to-virtual star 
point voltage (vm0(t)); 
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In the equations from (36) to (38), βm is the ratio among the 
resistance of respective line (rm) and a reference resistance 
value (rL), which can be one of the resistances of the lines. 

The main properties of the above summarised apparent 
power definitions are given in Table 1.

4. Application

Table 1 shows that there are five different apparent power 
definitions proposed for the effective utilisation of the 
system. In order to quantitatively analyse their abilities on 
the measurement of the system’s power transfer efficiency, 
the power factor and apparent power definitions related with 
total line loss is taken as the reference in the analysis. The 
reference definition of the power factor used in the analysis 
has the meaning of the power factor well expressed for 
sinusoidal and balanced three-phase systems with identical 
line resistances. The power factor for sinusoidal and balanced 

systems with identical line resistances can be expressed in 
terms of the total line loss as below:

Firstly, power factor is written as; 
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where Ipmin and Ip are the minimum and actual rms phase 
currents, which transport the same active power (P), with 
keeping same phase-to-phase voltage rms value (Vpp).

Second, the ratio among the minimum (∆Pmin) and actual 
(∆P) total line losses is expressed as;

22
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where r denotes line resistance. It should be kept in mind 
that active power has the same value for the both cases i.e. 
the minimum and actual line losses.
And then; the equivalent of Ipmin / Ip found in (39) is 
substituted in (40):

2 min
T

P
pf

P
∆

=
∆                        

   (41)

Finally, (41) can be arranged as;

min
T

Ppf
P

∆
=

∆                         
(42)

Thus, a fictitious apparent power (ST) could be calculated 
with respect to the definition of the power factor (pfT), which 
is driven for sinusoidal and balanced three-phase systems 
with identical line resistances:

Table 1.  The main properties of the summarised apparent powers.

Apparent Powers (AP) Properties

Arithmetic AP It is defined as the sum of each phase’s apparent power. So, it handles three-phase systems by 
treating each phase individually. 

Vector AP Vector apparent power is defined as the vector sum of total active, total reactive and total 
distortion powers, which are the sum of respective values for each phase. It threats each phase 
as an independent single phase system like Arithmetic apparent power.

Buchholz’s (or DIN standard) AP It is the maximal active power that can be transmitted for the given voltage waveform and the 
given current rms value. It threats three-phase system as a unit. 

Mayordomo and Usaola’s AP This is the modified version of Buchholz’s apparent power for the systems with different line 
resistances. 

IEEE standard AP It is the maximal active power that can be transmitted under sinusoidal and balanced conditions 
with the same voltage and current rms values. It threats three-phase system as a unit like the 
apparent powers defined by Buchholz and Mayordomo and Usaola. 

(38)
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min
T

T

P PS
pf P

P

= =
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∆                     

(43)

However, for unbalanced and non-sinusoidal systems, 
ST  depends on compensation strategy due to the fact that in 
practice ∆Pmin is related with the compensation strategy. The 
active compensation strategies can mainly be classified as the 
minimum line loss (MLL) and the sinusoidal and balanced 
current (SBC) compensations [1]. It is well known that the 
transferring of the same active power under same voltage 
wave shapes with the minimum line loss (MLL) can be 
achieved via the line currents, which are the perfect replicas 
of their respective line-to-a virtual neutral point voltages. 
On the other hand, SBC compensation, which is useful for 
the power quality improvement, the compensated phase 
currents contain only the active portion of the fundamental 
harmonic positive-sequence current that is in phase with the 
fundamental harmonic positive-sequence voltage.

Therefore, to show the abilities of the reviewed apparent 
power definitions on the measurement of the power 
transfer efficiency, they are evaluated against the fictitious 
apparent power (ST), which is calculated for MLL and 
SBC compensation strategies. During the comparison, the 
variation of the ratio among the resistances of neutral and 
phase lines (α = Rn/Rp) is also taken under consideration. The 
results of the analyses are obtained for the test system given in 
Figure 1. For α = 0.1, the wave shapes of the phase-to-neutral 
voltages and the phase currents, which are measured when 
the active compensator is not activated, are given in Figure 2.

It is shown from Figure 2 (a) and (b) that both load voltages 
and phase currents are non-sinusoidal and unbalanced. In the 
system without compensation, THDVa,b,c, 

 1 1/V V− +  and 
0

1 1/V V +
 of the phase-to-neutral voltages are 8%, 2.05% and 

10.25% respectively. In addition to that, for the same case 
of the system, THDIa,b,c, 1 1/I I− +

 and 0
1 1/I I +  of the phase 

currents are 35.00%, 22.30% and 36.30%, respectively. 

To analyse the ability of the reviewed apparent power 
definitions on the measurement of the power transfer 
efficiency, the relative differences between them and the 
apparent power definition derived in terms of the line loss 
(ST) are calculated in two steps:
—   Measurements on the system without 

compensation: SAr, SV, SΣ, Se and SMU are 
calculated at the load terminal of the system without 
compensation. Additionally, P and ∆P are calculated 
for the same case of the system.

—   Measurements on the system with the 
compensation: Active compensator is activated 
regarding the respected compensation strategy (MLL 
or SBC compensations). It should be underlined for 
the test system that the variations of P and phase-
to-neutral voltages measured at the load terminal 
are negligible when active compensator is activated.  
∆Pmin is found for the system with the active 
compensation. 

Consequently, pfT is calculated by substituting ∆Pmin 
and ∆P in (42), and ST is found by substituting P and pfT in 
(43). Thus, the relative differences (RDAr, RDV, RDe, RDΣ 
and RDMU) between ST and the reviewed apparent power 
definitions are obtained using (44):

( )% 100  X: Ar, V, e, ,   X T
X

T

S S
RD MU

S
−

= ⋅ ∑
  

(44)

Case I:  Evaluation of the reviewed apparent powers 
against the ST calculated for MLL compensation

For the MLL compensation strategy, SMU and ST give the 
same numerical value [4,15]. Thus, RDMU is nil for the 
same case. Due to this, for α values between 0.1 and 3, 
the variations of P, SMU and pfMU (= P/SMU) are plotted in 
Figure 3 (a). For the same α interval, RDAr, RDV, RDe and 
RDΣ are plotted in Figure 3 (b). It should be noted that the 

 Figure 1. Test system.
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voltage and the active power (P) are almost constant during 
the variation of α value. 

Figure 3 (a) shows that P is measured as 0.8104 pu for all 
α values. However, SMU increases from 1.0000 pu to 1.5122 
pu, and pfMU decreases from 0.8104 to 0.5359. These results 
point out that the ratio among the resistances of neutral and 
phase lines highly influences SMU and pfMU (or the true power 
transfer efficiency). It is shown from Figure 3 (b) that RDAr 
varies from –3.0538 to –35.8956, RDV varies from –7.2031 
to –38.6391, RDe varies from 18.3815 to –21.7347, and RDΣ 
varies from 18.1541 to –21.8841 with the increment of α. 

It is seen from the figure that  RDe and RDΣ is nil for α=1 
due to the fact that S∑ gives the same numerical value with 
SMU when all line resistances are equal. It is also seen from 
the figure that RDe and RDΣ are very close to each other 
for all α values. It is one of the most important results that 
RDAr and RDV are smaller than the relative differences of 
two major definitions (RDe and RDΣ) for α < 0.4 and α ≤ 0.3, 
respectively. Thus, one can see that SAr and SV give much 
accurate results on the power transfer efficiency than S∑ 
and Se for the system, which has the neutral line’s resistance 
considerably smaller than phase line’s resistance. However, 
for the system, which has the neutral line’s resistance close to 
or higher than phase line’s resistance, S∑ and Se have higher 
accuracy on the power transfer efficiency when compared 
to SAr and SV.

Case II: Evaluation of the reviewed apparent powers 
	 against the ST calculated for SBC compen- 
	 sation  

For the α values from 0.1 to 3, the variations of P, ST and 
pfT are plotted in Figure 4 (a). In addition to that, RDAr, RDV, 
RDe, RDΣ and RDMU are plotted in Figure 4 (b). Figure 4 
(a) shows that P has the same value measured as 0.8104 pu 
for all α values, ST increases from 0.9924 pu to 1.5099 pu, 
and pfT decreases from 0.8166 to 0.5367 with the increment 
of α. Thus, it can be seen from Figure 3 (a) and Figure 4 (a) 
that the specially derived power factor has almost the same 
values for both compensation strategies. It is also obvious 
from Figure 4 (b) that RDMU has very small values, which 

are between 0.7653 and 0.1519 for all α values. In addition 
to these results, RDAr varies from –2.3119 to –35.7982, RDV 
varies from –6.4930 to –38.5459, RDe varies from 19.2874 to 
–21.6158, and RDΣ varies from 19.0583 to -21.7655 with the 
increment of α. Therefore, it can be seen from Figure 3 (b) 
and Figure 4 (b) that the trends of the variation of RDAr, RDV, 
RDe and RDΣ are the same for both compensation strategies.

5. Conclusion

In this paper, the literature on three-phase apparent 
power definitions is carefully reviewed. The reviewed 
literature shows that the apparent power definition is still 

Figure 3. For Case I, the variations of (a) P, SMU and pfMU, and (b) RDAr, 
RDV, RDe and RDΣ with the increment of α.

Figure 2. (a) The wave shapes of phase-to-neutral voltages and (b) the phase currents.
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a controversial subject for unbalanced and non-sinusoidal 
systems. Therefore, it is figured out that the studies on the 
analysis of the apparent powers should continue to understand 
their capabilities and limitations. 

Accordingly, in a non-sinusoidal and unbalanced three-
phase system, the abilities of the widely known apparent 
power definitions on the measurement of the power transfer 
efficiency are quantitatively analysed by considering the 
apparent power definition, which is specially derived in 
terms of the total line loss of the system with and without 
compensation. In the analysis, two main compensation 
strategies, which are called as the minimum line loss (MLL) 
and sinusoidal and balanced current (SBC) compensations, 
are taken into account for the calculation of the specially 
derived apparent power definition. Thus, regarding two 
compensation strategies, the comparative evaluation of the 
specially derived and the widely known apparent powers are 
studied in the test system for several values of the unbalance 
ratio between neutral and phase lines resistances (α). The 
obtained results reveal that:
—   Arithmetic and Vector apparent powers give much 

accurate results on the system’s power transfer 
efficiency than DIN standard and IEEE standard 
apparent powers for the systems, which have the 
neutral line’s resistances considerably smaller than 
the phase line’s resistances. However, this is not the 
case for the systems with the value of the neutral line’s 
resistance close to or higher than the value of the 
phase line’s resistances. It should also be mentioned 
that the apparent power definitions’ accuracies on 
the measurement of the power transfer efficiency 

are considerably not affected with the type of 
compensation.

—   The unbalance among the resistances of neutral 
and phase lines highly influences the power factor 
(or the power transfer efficiency). Due to the fact 
that the normalized values of all line resistances are 
taken into account by the apparent power definition 
of Mayordomo and Usaola, it is the most accurate 
definition to measure the power transfer efficiency 
under unbalanced and non-sinusoidal conditions. 
However, its practical implementation is very difficult 
at the present time unless the system consists of a few 
transmission or distribution lines. Nevertheless, as 
the acceptance of smart energy metering and energy 
management systems will increase in the future, 
their apparent power definition can successfully be 
implemented for proper measurement of the power 
transfer efficiency. 
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