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of a Power Grid Signals – an Implementation  
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Summary: The paper presents an algorithm for detection of a complex envelope of power grid 
signals. The algorithm is based on a Hilbert transform. It was prepared for an analysis of a low-
frequency disturbances, but can also be used as a compex envelope source for other applications. An 
implementation of the algorithm in a digital signal processor was made to proof an ability of a real-
time operation. Analyses with various numerical representations and input signal quantization were 
done. Execution times on a DSP were measured. Tests proved that the presented algorithm is able to 
analyze power grid signals in a real-time with satisfying performance and uncertainty.

1. Introduction

Low-frequency voltage disturbances are considered a 
separate kind of voltage disturbances in a power grid. They 
are interpreted as a modulation, where the first harmonic is a 
carrier. Due to their effects on loads, the low-frequency voltage 
disturbances analysis is done with algorithms developed 
solely for this purpose. The most popular algorithm is the one 
used in a flickermeter [2]. However, many other algorithms 
are proposed, either for a disturbances demodulation and 
measurement [6, 4] or for their source detection [3]. Most 
of proposed algorithms neglect a signal phase modulation. 
This kind of a modulation is present in a power grid signals 
and is related to a grid structure itself. Phase variability of a 
power grid signals, especially voltage, is often very small. 
Despite that, in author’s opinion, it should not be neglected as 
this simplifies a low-frequency disturbances model to a point 
at which it may be hard to determine their source. Also, an 
algorithm developed for low-frequency disturbances analysis 
may be useful for a load variation analysis if it is made 
versatile enough. Such an algorithm and its implementation 
is presented in this paper.

2. An algorithm

The described algorith was originally desinged to provide 
a complex envelope signal for a low-frequency disturbances 
analysis. Another application is a load and source impedance 
estimation of a Thevenin model of a power grid. Using the 
described algorithm as a source of complex envelopes of 
voltage and current, measurement of a load impedance can be 
done directly by a realisation of its definition. The algorithm 
was designed to meet following requirements:
—	 low uncertainty, even at a cost of a higher delay and 

numerical complexity,
—	 independence of any power grid models; only a signal 

model is considered,
—	 constant group delay to avoid phase problems,
—	 versatility, allowing to use an algorithm as an envelope 

source in various applications.

3.1. Model of a low-frequency disturbances as  
       a complex modulation

An algorithm can’t be designed without consideration of 
an analyzed signal model. In this case, a signal is a power grid 
voltage, or, less frequently, current featuring low-frequency 
disturbances. This kind of disturbances is mostly generated by 
a load changes, with a non-zero source impedance. A power 
grid model that can be used to illustrate a low-frequency 
analysis generation and propagation is shown in Figure 1. 

This is an impedance-based model. As an impedance is 
defined for stationary systems only, using it to describe a 
non-stationary system causes errors. However, as shown 
in [5], such errors are not significant as long as parameters 
change slowly. In a presented model, tZ and tu  are source 
impedance and source voltage, respectively. They are 
considered stationary. In order to use a complex (impedance) 
notation, a voltage has to be considered sinusoidal. In a case 
of a non-sinusoidal source voltage, a separate analysis for 
each harmonic can be made if necessary. lZ  represents 
a stationary (disturbed) load, and dZ  represents a non-
stationary (disturbing) load. An equation relating a load 
voltage ( )lu t  with a disturbing impedance is:

d l
l t

d l d t l t

Z Zu = u
Z Z + Z Z + Z Z                  

(1)

Above voltage depends on a source impedance value, and 
relation of disturbing to disturbed load value. A dependency 

Fig. 1. A simplified power grid model used to illustrate low-frequency 
disturbances generation
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is non-linear, eg. sinusoidal load change will cause non-
sinusoidal voltage change. Because all values in equation 1 
are complex, low-frequency disturbances should be modelled 
as a complex modulation, not as an amplitude modulation. 
In fact, a pure amplitude modulation only happens in 
special cases. Based on an above model of a low-frequency 
disturbances generation, a model of a signal with such 
disturbances is:

( ) ( ) ( ) ( )( )sin 2m s px t x t f t t x tπ= +
           

(2)

( ) ( )( )1m m mvx t = X + x t
                    (3)

In an above model a system frequency fs(t) is also considered 
variable. A phase modulation is very small, and can be easily 
masked by a system frequency change. Thus, a system 
frequency should also be considered variable, and a method 
of separating momentary phase and system frequency signals 
should be included in a demodulation algorithm.

3.2. Description of the algorithm

The algorithm is based on a Hilbert transform, used to 
calculate an anlaytic signal from an input signal. If an input 
signal has a properly defined frequency band, an analytic 
signal components can be considered orthogonal components 
of an input signal. An input signal band should be limited 
to a single harmonic surroundings. It’s center is a frequency 
of an analyzed harmonic (usually 50 or 60 Hz), and it’s 
width is defined by an assumed low-frequency disturbances 
band. To obtain a narrow-band signal from an input signal, 
a filter or set of filers is used. After calculating an analytic 
signal, its components are used to calculate an immediate 
amplitude and a generalized phase by transforming to a radial 
coordinates system. An immediate amplitude is an estimate 
of an input signal amplitude; generalized phase icludes two 
components. One is an integrate of a slowly-changing system 
frequency, and the other is a quickly-changing momentary 
phase. These two components differ by frequency bands, 
so to estimate them a low- and highpass filtering is needed. 
Recapitulating, the algorithm includes three parts: a signal 
preparation, an analytic signal estimation, and an estimation 
of complex envelope elements. To keep a constant group 

delay requirement, all filters used are finite impulse response 
(FIR) filters. A block schematic of the algorithm is shown 
in Fgure 2.

 
2.2.1. Signal preparation

The signal preparation part includes an input filter and a 
decimation. In the second part of the algorithm an analytical 
signal amplitude and phase, also called general phase, are 
estimated. A deriverative of an analytical signal phase, a 
momentary frequency, is ambigous in any case when input 
signal was not narrowband [7, 8]. In order to avoid such an 
ambiguoity of a momentary frequency, a processed signal 
needs to be filtered using a narrowband input filter. Using 
a downsampling allows the rest of the algorithm to work 
with a fixed sampling frequency. This simplifies design, as 
for any given input sampling rate only a signal preparation 
part should be redesigned. In a case of a power grid signal, 
everything but a single harmonic and its surroundings are 
filtered out. The base harmonic is a most obvious signal 
component to analyze, although analysis of higher harmonics 
may yield iteresting results. Width of an input filter band 
is determined by an assumed band of a low-frequency 
disturbances. Such a band is defined in [2] as 50±35 Hz, 
or 15–85 Hz. This band is related to a flickermeter design 
with its corresponding load model. The described algorithm 
should be load model independent; however a low-frequency 
disturbances band is not precisely defined in any other way 
than in [2]. For this reason abovementioned frequency range 
wa choosen for an input filter. 

An input filter design is sampling-frequency dependent. 
For this reason, a soultion presented below should only 
be considered an example. An algorithm is designed as 
an element of a power quality analyzer device. Common 
sampling frequencies in such devices are around 10–12 
kHz. Designing FIR filter for a sampling frequency within 
this range with a cut-off frequency of around 100 Hz and an 
acceptable steepness of transition band yields an extremely 
long impulse response of around 2 thousand samples. It is 
better to divide an input filter and downsampling blocks 
into a series of consecutive filters and downasamplings by a 
lower factor. An example input block for a 10 kHz sampling 
frequency includes two filters. After each filter a signal is 
downsampled by 5. First filter is a 200 samples long, and a 
second one is 280 samples long. As a sampling frequency of 

Fig. 2. Block schematic of the described algorithm
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the second filter is 5 times lower than the first, it introduces 
most of an input block group delay, and is much stepper than 
the first filter. Both filters were designed using a window 
method, and for both of them a Blackman window was used 
for its low passband errors coupled with simplicity and good 
sidelobe attenuation.

2.2.2. Analytical signal estimation
An analytical signal is estimated in a time domain. A FIR 

Hilbert transformer is used to obtain an imaginary part of a 
signal, and a delay filter is used instead of a buffer delay to 
obtain a real part. Using filters in both signal paths allows 
an extra bandpass filtering of an analytical signal, increasing 
damping of an unwanted higher frequency components. 
Filters were designed to be type IV (Hilbert transformer) 
and type II (delay filter) FIR filters, with an impulse response 
length of 160 samples. Output signals of these filters are an 
analytical signal components; for a power grid signals they 
are orthogonal components. Before obtaining a complex 
envelope signal, a coordinate system need to be changed 
from cartesian to polar:

( ) ( ) ( )2 2
m r ix n = x n + x n

                  
(4)

( )
( )
( )

arctan i
ö

r

x n
x n =

x n

                          
(5)

Where xm(n) is a momentary amplitude, xΦ(n) is a general 
phase, and xr(n) and xi(n) are real and imaginary analytical 
signal components. It should be noted that above equations 
introduce a nonlinearity into an algorithm.

2.2.3. Complex envelope estimation
A complex envelope is composed of a momentary 

amplitude and a momentary phase. A momentary amplitude is 
an amplitude xm(n)  of an analyitcal signal. A general phase of 
this signal includes two components: an integral of a system 
frequency and a momentary phase. To separate these signals, 
a frequency band separation is used. A system frequency 
changes are related to a regulation processes in power plants, 
and a phase changes are caused mostly by load variation. 
Thus, system frequency occupies low-frequency band of 
a momentary frequency (a general phase deriverative), 
while phase changes occupy higher-frequency band. A 
band separation algorithm includes a differentiate estimator 
and two filtering blocks. A differential is estimated using 
finite difference method, which proves precise enough in an 
analyzed 0–35 Hz band, while providing smallest possible 
group delay. An obtained momentary frequency signal is then 
split into two filters: one for a momentary phase estimation, 
and one for a system frequency estimation. 

A system frequency signal is not needed for load 
variability analysis, nor for an impedance estimation, and 
it’s block is optional. However, a system frequency is a good 
indicator of a global state of a power system, as shown in 
[12]. Designing a system frequency filter may be done by 
assuming a definition from [1]. This standard defines a system 
frequency as a tenth of a number of whole cycles in a ten 

second long part of an analyzed signal. It is an equivalent of 
a 10 second long running average of a momentary frequency. 
A running average can be also interpreted as a filtering with a 
rectangular time window. Thus, it provides all advantages and 
drawbacks of such a window. The main lobe is the narrowest 
possible, at a cost of a low sidelobe attenuation. This may 
cause a significant leak of a high-frequency components into 
a system frequency signal. A possible solution is replacing 
rectangural time window with another time window. A non-
rectangular time window provides much higher sidelobe 
attenuation compared to rectangular window, at a cost 
of widening the main lobe. Overall, a system frequency 
estimation block includes two filters with a downsampling by 
10 between them. First filter is a 120 samples long lowpass 
filter, providing around 100 dB attenuation at 20 Hz. Second 
filter, 10 s or 400 samples long, is a hiperbolic time window 
as defined in [9]:

( ) ( )( )
421 2 25 0 18h nw . tanh . nπ= −

                 
(6)

Such a window has a main sidelobe 1.6 times wider than a 
rectangular window, with a sidelobe attenuation 2.3 times 
higer. Using it results in a system frequency band wider 
than the one derived from a definition in [1], but allows for 
a much better band separation between system frequency 
and a momentary phase. 

A momentary frequency signal is a differential of a 
phase signal. Thus, to obtain a momentary phase signal one 
must not only correctly separate its band, but also reverse 
a differentiation operation. A band of a momentary phase 
is not directly defined in any standard, so it can be defined 
freely by an algorithm author. The most obvious approach 
is using a frequency range defined in a flickermeter standard 
[2] as 0.05–35 Hz (modulation frequency). The higher cut-
off frequency is the same as a cut-off frequency of an input 
and Hilbert filters. The lower cut-off frequency is much 
lower than the system frequency band boundary presented 
above. As a system frequency band cannot be made much 
narrower without using a longer time window, a lower cut-off 
frequency of a momentary phase needs to be raised to over  
0.2 Hz. Overall, path including a differentiator and a 
momentary frequency filter should have a gain of 1 between 
0.2 and 35 Hz. A steep lower transition band is needed to 
avoid a system frequency leaks into a momentary phase 
signal. Considering an above requirements, a momentary 
frequency filter was designed using a frequency sampling 
method [13]. A desired amplitude-frequency response of 
a momentary frequency filter was set to a reciprocal of a 
differentiator response in a desired passband and to zero at 
the other frequencies. A type IV FIR filter was used in order 
to compensate for a π/2 phase shift of a differentiator.

3. An  implementation

An algorithm was implemented in order to show it’s 
usefullness in an on-line measurement equipment. To find out 
if a real-time operation in an embedded device is possible, 
following questions need to be answered:
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1. 	 Is the algorithm not too complex for state-of-the-art 	
		  embedded systems?
2. 	 Will it work using a single-precision floating point 		
		  numbers ?

In order to answer above quaestions, the algorithm was 
implemented on a TMS320C6713 digital signal processor 
(DSP) from Texas Instruments. It is a 32-bit floating-point 
DSP, equipped with two serial ports, universal memory 
controller and a multi-channel DMA controller. A DSP used 
in an implementation was a part of a DSK6713 starter kit, 
which featured 16 MB of a random access memory, 2 MB 
of a flash memory for a non-volatile storage, an audio codec, 
an expansion connectors, and a USB debug probe. A Code 
Composer Studio development environment was provided 
with a starter-kit. It allowed for a mixed C/embeddec C++ 
and assembly programming and provided a real-time kernel 
and libraries with a set of drivers for DSP peripherials.

An implementation was made in a C language, using 
an authomatic code optimizations and functions from an 
optimized mathematical library, called fastRTS. It could be 
made faster by optimizing code manually and rewriting at 
least part of it in an assembly language, but it would require 
a longer development time. As only an amount of needed 
computational throughoutput and rounding errors were to 
be tested, an implementation didn’t use an A/D converter. 
Instead, an input signal was read from and results were put 
into an on-board memory.

3.1. Numerical representation errors

In a theoretical description, an algorithm operates on 
real numbers. However, digital computers use fractional 
approximations of real numbers to represent data. This 
causes rounding errors, depending on chosen word length 
and representation. An algorithm was first implemented in 
Matlab, which uses 64-bit floating point representation, also 
called double precision representation. Floating-point digital 
signal processors, including TMS320C6713, use 32-bit 
representation, called single precision representation. Thus, 
an errors caused by limiting word length should be calculated. 
This can be done by comparing results of analysis carried out 
using different numerical representations. Only floating-point 
representations were tested. It should be noted that signals 
acquired using an A/D converter are seldom represented by 
more than 16-bit fixed-point numbers, even  if an algorithm 
itself works with floating-point numbers. Thus, an algorithm 
should also be tested for sensitivity to an input signal 
quantization. In order to compare an algorithm uncertainty 
with different numerical representations, two kinds of model 
experiments were conducted. First one included calculating 
frequency responses of an amplitude and phase demodulation. 
Such responses show attenuation of a sinusoidal modulation 
signal as a function of a modulation frequency, with carrier 
frequency and modulation depths being parameters. They 
allow to estimate maximum demodulation uncertainty for 
a sinusoidal modulation. Because of a wideband character 
of a power grid signal modulation, this uncertainty is only 
a rough estimate of a total uncertainty of the algorithm. 
However, it is suffcient as a measure of the algorithm 
performance with different numerical representations. Second 
experiment included analysing test signal with an algorithm 

implemented in a Matlab environment and in hardware, and 
presenting differences between obtained signals. This was 
done to proof a possibility of a DSP implementation and to 
illustrate an amount of uncertainty introduced by such an 
implementation.

3.1.1. Frequency responses for 32- and 64-bit		
          representation

Frequency responses of a momentary amplitude, 
momentary phase and system frequency estimators 
were calculated for a 32-bit and 64-bit floating-point 
representations. Separately, responses were calculated for 
64-bit floating-point algorithm anaysing an input signal 
quantized with a 16-bit quantizer. Differences between 
64- and 32-bit frequency responses for phase and amplitude 
estimators are of an order of 10−3 dB, lower than passband 
error of calculated frequency responses. This leads to a 

Fig. 3. Frequency responses of a momentary amplitude estimation algorithm 
for various numerical representations

(a) 64-bit floating point

(b) 32-bit floating point

 (c) 64-bit floating point with 16-bit quantized input signal
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conclusion that 32-bit numerical representation is not 
introducing significant uncertainty. Similar situation occurs 
for an input signal quantized with a 16-bit quantizer, with 
differences being slightly less, but of the same order of 
magnitude as in 32-bit representation. Example frequency 
responses for an amplitude estimation path are presented in 
Figure 3. 

3.1.2 A test signals analysis
Second expreiment included analysis of a test signal 

with the algorithm implemented in a DSP and comparing 
obtained results with ones calculated with the same algoritm 
in Matlab. Both implementations were using 32-bit floating 
point numbers, and a test signal was:

( ) ( ) 50 10sin 2 cos 2180m
s s

y n K n n nf f
ππ π

    = +            
(7)

( ) 101 0 01sin 2m
s

K n . nfπ
    = +                      

(8)

with a sampling rate fs of 10 kHz. Obtained amplitude and 
phase envelopes are shown in Fgure 4. A system frequency 
signal was also calculated. Most of differences between 
results obtained from a DSP and Matlab implementation are 
a result of a small phase shift in a DSP implementation. It is 
probably caused by a different rounding of filter coeffcients. 
Phase shift is similar for phase and amplitude signals, 
and without it differences between signals are around 1%  
for a momentary amplitude and around 2% for a momentary 
phase. Differences for a system frequency are around  
0.0001 Hz for a 50 Hz, which makes 0.0002%. Obtained 
results show a possibility of a DSP implementation of the 
described algorithm.

3.2. Computational complexity

To allow a real-time operation, an implemented algorithm 
needs to perform analysis for each input signal sample in time 
less than a sampling time. A too complex algorithm is unable 
to perform a real-time analysis on embedded devices, even 
if it was able to work off-line with pre-registered signals. 
In order to calculate a numerical complexity, a number of 
operations needed for a single iteration was calculated. An 
algorithm includes only digital FIR filters and a coordinate 
change. A FIR filter implemented in time domain requires one 
multiply and accumulate per sample per coeffcient plus data 
load/store operations. Amount of processor cycles needed for 
a specific FIR implementation depends on a processor used 
and code optimizations. For example, a TMS320C67x DSP 
Library functions [11] require a number of cycles roughly 
proportional to half of a number of filter coeffcients per input 
sample. However, a mentioned library is written in a highly 
optimized assembly language, and able to perform only block 
filtering. With an unoptimized FIR filter a number of cycles 
needed may be even a few times higher. A coordinate change 
requires one square root, two multiplications, one sum, one 
division and an arcus tangent estimation per an algorithm 
iteration. It’s time complexity depends on a chosen estimation 

algorithms and processor capabilities. A fastRTS library 
functions for TMS320C67x [10] take around 50 cycles for 
square root and around 100 cycles for arcus tangent using 
a single precision representation. It should be noted that an 
exact amount of calculations needed depends on input values. 
Concluding, evaluation of a precise amount of calculation 
needed for a single algorithm iteration is theoretiaclly 
simple. Practically, a precise amount of computing power 
needed highly depends on code optimization and number of 
additional operations, such as memory load/store, branches 
and task switching. Thus, a theoretical calculations should 
be only used for a rough estimation of a complexity of an 
algorithm implemented in a certain hardware. They can 
be used to find out if there is a possibility of a real-time 
operation, and how much of code optimization may be 
needed. An experiment conducted either with a real device 
or a cycle-accurate simulator is a more reliable method of 
verifying an algorithm.

3.2.1. Theoretical complexity of the described	  	
	  algorithm

If all output signals are needed, the algorithm includes total 
of seven FIR filters working with a total of four sampling 
frequencies, a deriverative estimator and a coordinate 
change operation. For a presented implementation, sampling 
frequencies are 10000, 2000, 400 and 40 Hz. Filters lengths 
vary between 120 and 1000 samples. A total number of 
multiply and accumulate operations needed is 3152000 per 
second, with 1 or 2 such operations per cycle for the used 
DSP. To siplify, one multiply and accumulate operation per 
cycle was counted, overrating a number of cycles needed. An 

Fig. 4. Amplitude and phase envelopes of a test signal demodulated with 
a Matlab implementation (continous line) and with a DSP implementation 
(dashed line) of the described algorithm

(a) amplitude envelope

(b) phase envelope
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amount of calculations required for a coordinate change and 
a differentiation should be added to a number of calculations 
needed for filters. It increases a total number of cycles per 
second to over 3.2 milion. Theoretically, the algorithm should 
be easily implementable in a DSP capable of around 1000 
milion operations per second. However, a calculated number 
is an amount of operations needed solely for calculations. An 
input signal is read from a dynamic RAM, which requires 
a large number of cycles per each read or write. Also, 
organizing circular buffers and controlling program execution 
causes a large overhead. 

3.2.2.  DSP load analysis
A cycle-accurate simulator was not provided with the 

starter kit used for an implementation. This left only one 
option of measuring an algorithm execution speed: executing 
it in a hardware and measuring an analysis time. An analysis 
time of a signal of a certain length was measured, followed by 
measuring time of a single algorithm iteration. A tested signal 
was 100 thousand samples long, an equivalent to seconds at 
10 kHz sampling frequency. Obtained results are presented in 
Table 1. Even without opitmizations the algorithm is able to 
perform a real-time analysis, as analyzing a 10 second long 
signal takes slightly less than ten seconds. An automatic code 
optimization provides a large gain in effectiveness, reducing 
an analysis time by over a half. Comparing a measured and 
theoretical execution speed shows a possibility of making an 
implementation much faster by manual code optimizations. 
It should be noted, however, that only an analysis of a few 
signals in parallel is possible. As power quality analysis for 
a three-phase system requires analysing of a six signals, the 
used DSP does not seem sufficient.

4. Conclusion

Presented results allow to conclude that the described 
algorithm is able to operate in a real-time in an embedded 
system. Uncertainties introduced by a numerical representation 
and an input signal quantization are not significant. An 
algorithm executes properly on a floating-point DSP. 
However, analysis of a single input signal took a significant 
amount of a DSP resources. For an impedance estimation, a 
two signals need to be analyzed, and a three-phase system 
requires parallel analysis of six signals. An obtained complex 
envelope signal is often used for a further analysis, which 
take an additional resources. For this reason, a DSP used is 
not suffcient for a multi-channel implementation. Such an 
analysis can be made possible by using an embedded PC 
platform or a multiprocessor DSP system. Implementing 
the algorithm to work in a fixed-point device would allow 
to execute it on a faster, fixed-point DSP or in a FPGA 
device. 

4.1. Further research

Planned further research include:
—	 implementing the algorithm for a multi-channel	  

analysis,
—	 a fixed-point implementation of the algorithm,
—	 using the algorithm in a distributed measurement system 

for disturbances propagation analysis.
Of the above, implementing an algorithm in a distributed 

system is the most interesting, though the most complicated 
one. In a distributed measurement system for power quality 
analysis multiple data acquisition systems with very precise 
measurement synchronization are required. Building 
such system with a careful choice of measurement points 
may allow for a detection of low-frequency disturbances 
sources.
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Table 1. Execution times of a non-optimized and automatically optimized 
algorithm in a TMS320C6713 DSP running at 225 MHz

  Optimized One cycle 10 s single

 no 2.43 ms 9.7 s

 auto 1.089 ms 4.32 s


