
13

Electrical Power Quality and Utilisation, Journal Vol. XIV, No. 2, 2008

A Hilbert Transform Based Algorithm
for Detection of a Complex Envelope
of a Power Grid Signals – an Implementation
Andrzej WETULA
AGH University of Science and Technology, POLAND

Summary: The paper presents an algorithm for detection of a complex envelope of power grid
signals. The algorithm is based on a Hilbert transform. It was prepared for an analysis of a low-
frequency disturbances, but can also be used as a compex envelope source for other applications. An
implementation of the algorithm in a digital signal processor was made to proof an ability of a real-
time operation. Analyses with various numerical representations and input signal quantization were
done. Execution times on a DSP were measured. Tests proved that the presented algorithm is able to
analyze power grid signals in a real-time with satisfying performance and uncertainty.

1. Introduction

Low-frequency voltage disturbances are considered a
separate kind of voltage disturbances in a power grid. They
are interpreted as a modulation, where the first harmonic is a
carrier. Due to their effects on loads, the low-frequency voltage
disturbances analysis is done with algorithms developed
solely for this purpose. The most popular algorithm is the one
used in a flickermeter [2]. However, many other algorithms
are proposed, either for a disturbances demodulation and
measurement [6, 4] or for their source detection [3]. Most
of proposed algorithms neglect a signal phase modulation.
This kind of a modulation is present in a power grid signals
and is related to a grid structure itself. Phase variability of a
power grid signals, especially voltage, is often very small.
Despite that, in author’s opinion, it should not be neglected as
this simplifies a low-frequency disturbances model to a point
at which it may be hard to determine their source. Also, an
algorithm developed for low-frequency disturbances analysis
may be useful for a load variation analysis if it is made
versatile enough. Such an algorithm and its implementation
is presented in this paper.

2. An algorithm

The described algorith was originally desinged to provide
a complex envelope signal for a low-frequency disturbances
analysis. Another application is a load and source impedance
estimation of a Thevenin model of a power grid. Using the
described algorithm as a source of complex envelopes of
voltage and current, measurement of a load impedance can be
done directly by a realisation of its definition. The algorithm
was designed to meet following requirements:
—	 low uncertainty, even at a cost of a higher delay and

numerical complexity,
—	 independence of any power grid models; only a signal

model is considered,
—	 constant group delay to avoid phase problems,
—	 versatility, allowing to use an algorithm as an envelope

source in various applications.

3.1. Model of a low-frequency disturbances as
 a complex modulation

An algorithm can’t be designed without consideration of
an analyzed signal model. In this case, a signal is a power grid
voltage, or, less frequently, current featuring low-frequency
disturbances. This kind of disturbances is mostly generated by
a load changes, with a non-zero source impedance. A power
grid model that can be used to illustrate a low-frequency
analysis generation and propagation is shown in Figure 1.

This is an impedance-based model. As an impedance is
defined for stationary systems only, using it to describe a
non-stationary system causes errors. However, as shown
in [5], such errors are not significant as long as parameters
change slowly. In a presented model, tZ and tu are source
impedance and source voltage, respectively. They are
considered stationary. In order to use a complex (impedance)
notation, a voltage has to be considered sinusoidal. In a case
of a non-sinusoidal source voltage, a separate analysis for
each harmonic can be made if necessary. lZ represents
a stationary (disturbed) load, and dZ represents a non-
stationary (disturbing) load. An equation relating a load
voltage ()lu t with a disturbing impedance is:

d l
l t

d l d t l t

Z Zu = u
Z Z + Z Z + Z Z

(1)

Above voltage depends on a source impedance value, and
relation of disturbing to disturbed load value. A dependency

Fig. 1. A simplified power grid model used to illustrate low-frequency
disturbances generation

Andrzej Wetula: A Hilbert Transform Based Algorithm for Detection of a Complex Envelope,,,

Key words:
power quality,
measurement,
Hilbert transformation,
implementation,
DSP

14 Power Quality and Utilization, Journal • Vol. XIV, No 2, 2008

is non-linear, eg. sinusoidal load change will cause non-
sinusoidal voltage change. Because all values in equation 1
are complex, low-frequency disturbances should be modelled
as a complex modulation, not as an amplitude modulation.
In fact, a pure amplitude modulation only happens in
special cases. Based on an above model of a low-frequency
disturbances generation, a model of a signal with such
disturbances is:

() () () ()()sin 2m s px t x t f t t x tπ= +

(2)

() ()()1m m mvx t = X + x t
 (3)

In an above model a system frequency fs(t) is also considered
variable. A phase modulation is very small, and can be easily
masked by a system frequency change. Thus, a system
frequency should also be considered variable, and a method
of separating momentary phase and system frequency signals
should be included in a demodulation algorithm.

3.2. Description of the algorithm

The algorithm is based on a Hilbert transform, used to
calculate an anlaytic signal from an input signal. If an input
signal has a properly defined frequency band, an analytic
signal components can be considered orthogonal components
of an input signal. An input signal band should be limited
to a single harmonic surroundings. It’s center is a frequency
of an analyzed harmonic (usually 50 or 60 Hz), and it’s
width is defined by an assumed low-frequency disturbances
band. To obtain a narrow-band signal from an input signal,
a filter or set of filers is used. After calculating an analytic
signal, its components are used to calculate an immediate
amplitude and a generalized phase by transforming to a radial
coordinates system. An immediate amplitude is an estimate
of an input signal amplitude; generalized phase icludes two
components. One is an integrate of a slowly-changing system
frequency, and the other is a quickly-changing momentary
phase. These two components differ by frequency bands,
so to estimate them a low- and highpass filtering is needed.
Recapitulating, the algorithm includes three parts: a signal
preparation, an analytic signal estimation, and an estimation
of complex envelope elements. To keep a constant group

delay requirement, all filters used are finite impulse response
(FIR) filters. A block schematic of the algorithm is shown
in Fgure 2.

2.2.1. Signal preparation

The signal preparation part includes an input filter and a
decimation. In the second part of the algorithm an analytical
signal amplitude and phase, also called general phase, are
estimated. A deriverative of an analytical signal phase, a
momentary frequency, is ambigous in any case when input
signal was not narrowband [7, 8]. In order to avoid such an
ambiguoity of a momentary frequency, a processed signal
needs to be filtered using a narrowband input filter. Using
a downsampling allows the rest of the algorithm to work
with a fixed sampling frequency. This simplifies design, as
for any given input sampling rate only a signal preparation
part should be redesigned. In a case of a power grid signal,
everything but a single harmonic and its surroundings are
filtered out. The base harmonic is a most obvious signal
component to analyze, although analysis of higher harmonics
may yield iteresting results. Width of an input filter band
is determined by an assumed band of a low-frequency
disturbances. Such a band is defined in [2] as 50±35 Hz,
or 15–85 Hz. This band is related to a flickermeter design
with its corresponding load model. The described algorithm
should be load model independent; however a low-frequency
disturbances band is not precisely defined in any other way
than in [2]. For this reason abovementioned frequency range
wa choosen for an input filter.

An input filter design is sampling-frequency dependent.
For this reason, a soultion presented below should only
be considered an example. An algorithm is designed as
an element of a power quality analyzer device. Common
sampling frequencies in such devices are around 10–12
kHz. Designing FIR filter for a sampling frequency within
this range with a cut-off frequency of around 100 Hz and an
acceptable steepness of transition band yields an extremely
long impulse response of around 2 thousand samples. It is
better to divide an input filter and downsampling blocks
into a series of consecutive filters and downasamplings by a
lower factor. An example input block for a 10 kHz sampling
frequency includes two filters. After each filter a signal is
downsampled by 5. First filter is a 200 samples long, and a
second one is 280 samples long. As a sampling frequency of

Fig. 2. Block schematic of the described algorithm

15

the second filter is 5 times lower than the first, it introduces
most of an input block group delay, and is much stepper than
the first filter. Both filters were designed using a window
method, and for both of them a Blackman window was used
for its low passband errors coupled with simplicity and good
sidelobe attenuation.

2.2.2. Analytical signal estimation
An analytical signal is estimated in a time domain. A FIR

Hilbert transformer is used to obtain an imaginary part of a
signal, and a delay filter is used instead of a buffer delay to
obtain a real part. Using filters in both signal paths allows
an extra bandpass filtering of an analytical signal, increasing
damping of an unwanted higher frequency components.
Filters were designed to be type IV (Hilbert transformer)
and type II (delay filter) FIR filters, with an impulse response
length of 160 samples. Output signals of these filters are an
analytical signal components; for a power grid signals they
are orthogonal components. Before obtaining a complex
envelope signal, a coordinate system need to be changed
from cartesian to polar:

() () ()2 2
m r ix n = x n + x n

(4)

()
()
()

arctan i
ö

r

x n
x n =

x n

     
(5)

Where xm(n) is a momentary amplitude, xΦ(n) is a general
phase, and xr(n) and xi(n) are real and imaginary analytical
signal components. It should be noted that above equations
introduce a nonlinearity into an algorithm.

2.2.3. Complex envelope estimation
A complex envelope is composed of a momentary

amplitude and a momentary phase. A momentary amplitude is
an amplitude xm(n) of an analyitcal signal. A general phase of
this signal includes two components: an integral of a system
frequency and a momentary phase. To separate these signals,
a frequency band separation is used. A system frequency
changes are related to a regulation processes in power plants,
and a phase changes are caused mostly by load variation.
Thus, system frequency occupies low-frequency band of
a momentary frequency (a general phase deriverative),
while phase changes occupy higher-frequency band. A
band separation algorithm includes a differentiate estimator
and two filtering blocks. A differential is estimated using
finite difference method, which proves precise enough in an
analyzed 0–35 Hz band, while providing smallest possible
group delay. An obtained momentary frequency signal is then
split into two filters: one for a momentary phase estimation,
and one for a system frequency estimation.

A system frequency signal is not needed for load
variability analysis, nor for an impedance estimation, and
it’s block is optional. However, a system frequency is a good
indicator of a global state of a power system, as shown in
[12]. Designing a system frequency filter may be done by
assuming a definition from [1]. This standard defines a system
frequency as a tenth of a number of whole cycles in a ten

second long part of an analyzed signal. It is an equivalent of
a 10 second long running average of a momentary frequency.
A running average can be also interpreted as a filtering with a
rectangular time window. Thus, it provides all advantages and
drawbacks of such a window. The main lobe is the narrowest
possible, at a cost of a low sidelobe attenuation. This may
cause a significant leak of a high-frequency components into
a system frequency signal. A possible solution is replacing
rectangural time window with another time window. A non-
rectangular time window provides much higher sidelobe
attenuation compared to rectangular window, at a cost
of widening the main lobe. Overall, a system frequency
estimation block includes two filters with a downsampling by
10 between them. First filter is a 120 samples long lowpass
filter, providing around 100 dB attenuation at 20 Hz. Second
filter, 10 s or 400 samples long, is a hiperbolic time window
as defined in [9]:

() ()()
421 2 25 0 18h nw . tanh . nπ= −

(6)

Such a window has a main sidelobe 1.6 times wider than a
rectangular window, with a sidelobe attenuation 2.3 times
higer. Using it results in a system frequency band wider
than the one derived from a definition in [1], but allows for
a much better band separation between system frequency
and a momentary phase.

A momentary frequency signal is a differential of a
phase signal. Thus, to obtain a momentary phase signal one
must not only correctly separate its band, but also reverse
a differentiation operation. A band of a momentary phase
is not directly defined in any standard, so it can be defined
freely by an algorithm author. The most obvious approach
is using a frequency range defined in a flickermeter standard
[2] as 0.05–35 Hz (modulation frequency). The higher cut-
off frequency is the same as a cut-off frequency of an input
and Hilbert filters. The lower cut-off frequency is much
lower than the system frequency band boundary presented
above. As a system frequency band cannot be made much
narrower without using a longer time window, a lower cut-off
frequency of a momentary phase needs to be raised to over
0.2 Hz. Overall, path including a differentiator and a
momentary frequency filter should have a gain of 1 between
0.2 and 35 Hz. A steep lower transition band is needed to
avoid a system frequency leaks into a momentary phase
signal. Considering an above requirements, a momentary
frequency filter was designed using a frequency sampling
method [13]. A desired amplitude-frequency response of
a momentary frequency filter was set to a reciprocal of a
differentiator response in a desired passband and to zero at
the other frequencies. A type IV FIR filter was used in order
to compensate for a π/2 phase shift of a differentiator.

3. An implementation

An algorithm was implemented in order to show it’s
usefullness in an on-line measurement equipment. To find out
if a real-time operation in an embedded device is possible,
following questions need to be answered:

Andrzej Wetula: A Hilbert Transform Based Algorithm for Detection of a Complex Envelope,,,

16 Power Quality and Utilization, Journal • Vol. XIV, No 2, 2008

1. 	 Is the algorithm not too complex for state-of-the-art 	
		 embedded systems?
2. 	 Will it work using a single-precision floating point 		
		 numbers ?

In order to answer above quaestions, the algorithm was
implemented on a TMS320C6713 digital signal processor
(DSP) from Texas Instruments. It is a 32-bit floating-point
DSP, equipped with two serial ports, universal memory
controller and a multi-channel DMA controller. A DSP used
in an implementation was a part of a DSK6713 starter kit,
which featured 16 MB of a random access memory, 2 MB
of a flash memory for a non-volatile storage, an audio codec,
an expansion connectors, and a USB debug probe. A Code
Composer Studio development environment was provided
with a starter-kit. It allowed for a mixed C/embeddec C++
and assembly programming and provided a real-time kernel
and libraries with a set of drivers for DSP peripherials.

An implementation was made in a C language, using
an authomatic code optimizations and functions from an
optimized mathematical library, called fastRTS. It could be
made faster by optimizing code manually and rewriting at
least part of it in an assembly language, but it would require
a longer development time. As only an amount of needed
computational throughoutput and rounding errors were to
be tested, an implementation didn’t use an A/D converter.
Instead, an input signal was read from and results were put
into an on-board memory.

3.1. Numerical representation errors

In a theoretical description, an algorithm operates on
real numbers. However, digital computers use fractional
approximations of real numbers to represent data. This
causes rounding errors, depending on chosen word length
and representation. An algorithm was first implemented in
Matlab, which uses 64-bit floating point representation, also
called double precision representation. Floating-point digital
signal processors, including TMS320C6713, use 32-bit
representation, called single precision representation. Thus,
an errors caused by limiting word length should be calculated.
This can be done by comparing results of analysis carried out
using different numerical representations. Only floating-point
representations were tested. It should be noted that signals
acquired using an A/D converter are seldom represented by
more than 16-bit fixed-point numbers, even if an algorithm
itself works with floating-point numbers. Thus, an algorithm
should also be tested for sensitivity to an input signal
quantization. In order to compare an algorithm uncertainty
with different numerical representations, two kinds of model
experiments were conducted. First one included calculating
frequency responses of an amplitude and phase demodulation.
Such responses show attenuation of a sinusoidal modulation
signal as a function of a modulation frequency, with carrier
frequency and modulation depths being parameters. They
allow to estimate maximum demodulation uncertainty for
a sinusoidal modulation. Because of a wideband character
of a power grid signal modulation, this uncertainty is only
a rough estimate of a total uncertainty of the algorithm.
However, it is suffcient as a measure of the algorithm
performance with different numerical representations. Second
experiment included analysing test signal with an algorithm

implemented in a Matlab environment and in hardware, and
presenting differences between obtained signals. This was
done to proof a possibility of a DSP implementation and to
illustrate an amount of uncertainty introduced by such an
implementation.

3.1.1. Frequency responses for 32- and 64-bit		
 representation

Frequency responses of a momentary amplitude,
momentary phase and system frequency estimators
were calculated for a 32-bit and 64-bit floating-point
representations. Separately, responses were calculated for
64-bit floating-point algorithm anaysing an input signal
quantized with a 16-bit quantizer. Differences between
64- and 32-bit frequency responses for phase and amplitude
estimators are of an order of 10−3 dB, lower than passband
error of calculated frequency responses. This leads to a

Fig. 3. Frequency responses of a momentary amplitude estimation algorithm
for various numerical representations

(a) 64-bit floating point

(b) 32-bit floating point

 (c) 64-bit floating point with 16-bit quantized input signal

17

conclusion that 32-bit numerical representation is not
introducing significant uncertainty. Similar situation occurs
for an input signal quantized with a 16-bit quantizer, with
differences being slightly less, but of the same order of
magnitude as in 32-bit representation. Example frequency
responses for an amplitude estimation path are presented in
Figure 3.

3.1.2 A test signals analysis
Second expreiment included analysis of a test signal

with the algorithm implemented in a DSP and comparing
obtained results with ones calculated with the same algoritm
in Matlab. Both implementations were using 32-bit floating
point numbers, and a test signal was:

() () 50 10sin 2 cos 2180m
s s

y n K n n nf f
ππ π

    = +        
(7)

() 101 0 01sin 2m
s

K n . nfπ
    = +        

(8)

with a sampling rate fs of 10 kHz. Obtained amplitude and
phase envelopes are shown in Fgure 4. A system frequency
signal was also calculated. Most of differences between
results obtained from a DSP and Matlab implementation are
a result of a small phase shift in a DSP implementation. It is
probably caused by a different rounding of filter coeffcients.
Phase shift is similar for phase and amplitude signals,
and without it differences between signals are around 1%
for a momentary amplitude and around 2% for a momentary
phase. Differences for a system frequency are around
0.0001 Hz for a 50 Hz, which makes 0.0002%. Obtained
results show a possibility of a DSP implementation of the
described algorithm.

3.2. Computational complexity

To allow a real-time operation, an implemented algorithm
needs to perform analysis for each input signal sample in time
less than a sampling time. A too complex algorithm is unable
to perform a real-time analysis on embedded devices, even
if it was able to work off-line with pre-registered signals.
In order to calculate a numerical complexity, a number of
operations needed for a single iteration was calculated. An
algorithm includes only digital FIR filters and a coordinate
change. A FIR filter implemented in time domain requires one
multiply and accumulate per sample per coeffcient plus data
load/store operations. Amount of processor cycles needed for
a specific FIR implementation depends on a processor used
and code optimizations. For example, a TMS320C67x DSP
Library functions [11] require a number of cycles roughly
proportional to half of a number of filter coeffcients per input
sample. However, a mentioned library is written in a highly
optimized assembly language, and able to perform only block
filtering. With an unoptimized FIR filter a number of cycles
needed may be even a few times higher. A coordinate change
requires one square root, two multiplications, one sum, one
division and an arcus tangent estimation per an algorithm
iteration. It’s time complexity depends on a chosen estimation

algorithms and processor capabilities. A fastRTS library
functions for TMS320C67x [10] take around 50 cycles for
square root and around 100 cycles for arcus tangent using
a single precision representation. It should be noted that an
exact amount of calculations needed depends on input values.
Concluding, evaluation of a precise amount of calculation
needed for a single algorithm iteration is theoretiaclly
simple. Practically, a precise amount of computing power
needed highly depends on code optimization and number of
additional operations, such as memory load/store, branches
and task switching. Thus, a theoretical calculations should
be only used for a rough estimation of a complexity of an
algorithm implemented in a certain hardware. They can
be used to find out if there is a possibility of a real-time
operation, and how much of code optimization may be
needed. An experiment conducted either with a real device
or a cycle-accurate simulator is a more reliable method of
verifying an algorithm.

3.2.1. Theoretical complexity of the described	 	
	 algorithm

If all output signals are needed, the algorithm includes total
of seven FIR filters working with a total of four sampling
frequencies, a deriverative estimator and a coordinate
change operation. For a presented implementation, sampling
frequencies are 10000, 2000, 400 and 40 Hz. Filters lengths
vary between 120 and 1000 samples. A total number of
multiply and accumulate operations needed is 3152000 per
second, with 1 or 2 such operations per cycle for the used
DSP. To siplify, one multiply and accumulate operation per
cycle was counted, overrating a number of cycles needed. An

Fig. 4. Amplitude and phase envelopes of a test signal demodulated with
a Matlab implementation (continous line) and with a DSP implementation
(dashed line) of the described algorithm

(a) amplitude envelope

(b) phase envelope

Andrzej Wetula: A Hilbert Transform Based Algorithm for Detection of a Complex Envelope,,,

18 Power Quality and Utilization, Journal • Vol. XIV, No 2, 2008

amount of calculations required for a coordinate change and
a differentiation should be added to a number of calculations
needed for filters. It increases a total number of cycles per
second to over 3.2 milion. Theoretically, the algorithm should
be easily implementable in a DSP capable of around 1000
milion operations per second. However, a calculated number
is an amount of operations needed solely for calculations. An
input signal is read from a dynamic RAM, which requires
a large number of cycles per each read or write. Also,
organizing circular buffers and controlling program execution
causes a large overhead.

3.2.2. DSP load analysis
A cycle-accurate simulator was not provided with the

starter kit used for an implementation. This left only one
option of measuring an algorithm execution speed: executing
it in a hardware and measuring an analysis time. An analysis
time of a signal of a certain length was measured, followed by
measuring time of a single algorithm iteration. A tested signal
was 100 thousand samples long, an equivalent to seconds at
10 kHz sampling frequency. Obtained results are presented in
Table 1. Even without opitmizations the algorithm is able to
perform a real-time analysis, as analyzing a 10 second long
signal takes slightly less than ten seconds. An automatic code
optimization provides a large gain in effectiveness, reducing
an analysis time by over a half. Comparing a measured and
theoretical execution speed shows a possibility of making an
implementation much faster by manual code optimizations.
It should be noted, however, that only an analysis of a few
signals in parallel is possible. As power quality analysis for
a three-phase system requires analysing of a six signals, the
used DSP does not seem sufficient.

4. Conclusion

Presented results allow to conclude that the described
algorithm is able to operate in a real-time in an embedded
system. Uncertainties introduced by a numerical representation
and an input signal quantization are not significant. An
algorithm executes properly on a floating-point DSP.
However, analysis of a single input signal took a significant
amount of a DSP resources. For an impedance estimation, a
two signals need to be analyzed, and a three-phase system
requires parallel analysis of six signals. An obtained complex
envelope signal is often used for a further analysis, which
take an additional resources. For this reason, a DSP used is
not suffcient for a multi-channel implementation. Such an
analysis can be made possible by using an embedded PC
platform or a multiprocessor DSP system. Implementing
the algorithm to work in a fixed-point device would allow
to execute it on a faster, fixed-point DSP or in a FPGA
device.

4.1. Further research

Planned further research include:
—	 implementing the algorithm for a multi-channel	

analysis,
—	 a fixed-point implementation of the algorithm,
—	 using the algorithm in a distributed measurement system

for disturbances propagation analysis.
Of the above, implementing an algorithm in a distributed

system is the most interesting, though the most complicated
one. In a distributed measurement system for power quality
analysis multiple data acquisition systems with very precise
measurement synchronization are required. Building
such system with a careful choice of measurement points
may allow for a detection of low-frequency disturbances
sources.

References

1. IEC standard: Electromagnetic compatibility (emc), part 4–30: Testing
and measurement techniques — power quality measurement methods,
basic emc publication, 2000.

2. IEC Standard: Electromagnetic compatibility (emc) — part 4: Testing
and measurement techniques — section 15: Flickermeter - functional
and design specifications, 2003.

3. A x e l b e r g P. G . V. , B o l l e n M . H . J . : An algorithm for
determining the direction to a flicker source. IEEE Transactions on
Power Delivery, 2006, 21(2):755–760.

4. Bień A. , Duda K. , Szyper M., Wetula A. , Ziel iński T.P. ,
Rozkrut A.: The new measure of low-frequency energy disturbances
in power system. Metrology and Measurement Systems, 2005,
XI(2).

5. B i e ń A . , S z y p e r M . , We t u l a A .: Model studies on signals
measured with light flicker severity meter (in polish). Proceedings
of XV Symposium on Modelling and Simulation of Measurement
Systems, pages 193–201, Krynica, Poland, september 2005.

6. F e i l a t E . A . : Detection of voltage envelope using prony analysis
— hilbert transform method. IEEE Transactions on Power Delivery,
2006, 21(4): 2091–2093.

7. G a b o r D . : Theory of communication. Procedings of the IEE, 1946,
93: 429–457.

8. H u a n g N . E . , S h e n Z . , L o n g S . R . , Wu M . C . , S h i h
H . H . , Z h e n g Q . , Ye n N . , C h a o Tu n g C . , L i u H . H . :
The empirical mode decomposition and the hilbert spectrum for
nonlinear and non-stationary time series analysis. Proc. of the Royal
Soc. London A, 1998, 454: 903–995.

9. S z y p e r M . : New time domain windows. Electronics Letters, 1995,
31(9).

10. Texas Instruments Inc., TMS320C67x FastRTS Library Programmer’s
Reference (spru100a.pdf), 2002.

11. Texas Instruments Inc., TMS320C67x DSP Library Programmer’s
Reference (spru657b.pdf), 2006.

12. We l f o n d e r E . : Least-cost dynamic interaction of power plants
and power systems. Control Eng. Practice, 1997, 5(9): 1203–1216.

13. Z i e l i ń s k i T. P. : Od teorii do cyfrowego przetwarzania sygnałów.
2002, Publisher: Nakładem Wydziału EAIiE AGH, Kraków.

Andrzej Wetula, Ph.D.
is a research and teaching assistant in a Department of
Measurement and Instrumentation, Faculty of Electrical
Engineering, Automatics, Computer Science and
Electronics, AGH University of Science and Technology,
Krakow, Poland. His main research interest is analysis
of a low-frequency disturbances in a power grid. Other
research interests include distributed measurement
systems.

e-mail address: wetula@agh.edu.pl
research team web page: www.poweragh.xt.pl.

Table 1. Execution times of a non-optimized and automatically optimized
algorithm in a TMS320C6713 DSP running at 225 MHz

 Optimized One cycle 10 s single

 no 2.43 ms 9.7 s

 auto 1.089 ms 4.32 s

